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1. Introduction 

Given the distr ibution (prior or posterior) of an unknown vector 0 
and a positive-definite quadratic loss function l, 

( 1 ) l(O, 0) = (0-- O)'L(O-- 6), 

the optimum estimate t~ of 0 is, as is well known, EO. For 

( 2 ) El(O, O)=tr  (L V)+(EO-O) 'L(EO-O) ,  

where V = E ( O - E O ) ( R - E O ) ' .  A decision procedure, based on t7,0, is 
here presented for linear-hypothesis problems in a certain point-estima- 
tion context. The method offers the convenience of using moments, 
which are generally more available than probabilities of events, espe- 
cially with multidimensional distributions. 

2. The decision rule 

Suppose a person is contemplating whether to assert that the p- 
vector 0 lies effectively in a certain r-dimensional linear manifold S(r<p). 
So to assert is here interpreted as constraining an estimate 0 to lie in 

S. The problem of whether to make the assertion and what estimate 
to make in either event can be expressed organically as that of minimiz- 
ing the expectation of a possibly negative loss function of the form, 

( 3 ) o )  - 

where S ( . ) i s  the indicator function for the linear manifold S, Us is 
the utility of declaring that 0 lies effectively in S; it is the conceptual 
and practical advantage of the simplified model. Under the Bayes de- 
cision rule for the loss function (3), one declares that 0 lies effectively 

in S if the difference between the minimum, with 0" in S, of the ex- 
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pectation of l(O, 0) and the unconstrained minimum does not exceed Us. 

We assume that  l(O, 0) is given by equation (1), and that  the co- 
ordinates of 0 are so chosen tha t  S contains the origin 0. Hence, 0 
can be wri t ten uniquely as 

( 4 ) 0 = 0 o + 0 1 ,  

where 0o lies in S and 8~L~=O for all ~ in S. (Matrix operators are, 
of course, available to obtain the projection 00 from 8). Similarly, write 

O=Oo+O~. Then we have 

( 5 ) l(O, O)=L((Oo-Oo))+L((01-01)), 

introducing the notation L((~)) for the quadratic form ~'L~. 

The expectation of l(O, 0) is minimized when the expectations of 
both terms on the right-hand side of (5) are minimized. Let '2 be the 
expectation of 0 and write as in (4), 72=720+,21. The unconstrained mini- 

mum of the expectation of l(O, 0) is attained at 0=72, 

El(,2, O) = EL((Oo- ~20)) + EL((01-  ,2,)) ; 

and the constrained minimum is attained at O=,20, 

EI(~2o, O) = EL((Oo- 720)) + EL((01)) 
=E/0Y, 0)+L(011)) �9 

Thus one finds oneself comparing L(021)) with Us. Although the 
covariance s tructure of 0 is useful to determine the actual expectation 
of the loss, the expectation of 0 is the only feature of its distribution 
formally utilized by the decision rule. 

Anscombe [1] has studied many-decision procedures in factor-screen- 
ing experiments with what  in two-decision problems is essentially the 
loss function, for quadratic l, 

[t(Ol, 01) -- Us] .S(O). 

The formal decision rule with this loss function is to compare El(O, 01) 
with Us. 
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